Polycationic nanoparticles for siRNA delivery: comparing ARGET ATRP and UV-initiated formulations.
نویسندگان
چکیده
In this work, we develop and evaluate polycationic nanoparticles for the delivery of small interfering RNA (siRNA). Delivery remains a major challenge for translating siRNA to the clinic, and overcoming the delivery challenge requires effective siRNA delivery vehicles that meet the demands of the specific delivery strategy. Cross-linked polycationic nanoparticle formulations were synthesized using ARGET ATRP or UV-initiated polymerization. The one-step, one-pot, surfactant-stabilized monomer-in-water synthesis technique may provide a simpler and faster alternative to complicated, multistep techniques and an alternative to methods that rely on toxic organic solvents. The polymer nanoparticles were synthesized using the cationic monomer 2-(diethylamino)ethyl methacrylate, the hydrophobic monomer tert-butyl methacrylate to tune pH responsiveness, the hydrophilic monomer poly(ethylene glycol) methyl ether methacrylate to improve biocompatibility, and cross-linking agent tetraethylene glycol dimethacrylate to enhance colloidal stability. Four formulations were evaluated for their suitability as siRNA delivery vehicles in vitro with the human embryonic kidney cell line HEK293T or the murine macrophage cell line RAW264.7. The polycationic nanoparticles demonstrated efficient and rapid loading of the anionic siRNA following complexation. Confocal microscopy as well as flow cytometry analysis of cells treated with polycationic nanoparticles loaded with fluorescently labeled siRNA demonstrated that the polycationic nanoparticles promoted cellular uptake of fluorescently labeled siRNA. Knockdown experiments using polycationic nanoparticles to deliver siRNA demonstrated evidence of knockdown, thus demonstrating potential as an alternative route to creating polycationic nanoparticles.
منابع مشابه
Polymeric nanocarriers for siRNA delivery to murine macrophages.
This work investigates the interactions of a polycationic nanocarrier with siRNA and with cells in order to better understand the capabilities and limitations of the carrier. The polycationic nanocarriers are cross-linked copolymer nanoparticles synthesized in a single-step reaction using ARGET ATRP (activators regenerated by electron transfer atom transfer radical polymerization). The polycati...
متن کاملATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems
The grafting of poly(hydroxyethylmethacrylate) on polymeric porous membranes via atom transfer radical polymerization (ATRP) and subsequent modification with a photo-responsive spiropyran derivative is described. This method leads to photo-responsive membranes with desirable properties such as light-controlled permeability changes, exceptional photo-stability and repeatability of the photo-resp...
متن کاملPoly(methyl methacrylate) grafted imogolite nanotubes prepared through surface-initiated ARGET ATRP.
Poly(methyl methacrylate) grafted imogolite clay nanotubes were fabricated via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) by designing a water-soluble amphiphilic ATRP initiator that can adsorb onto imogolite surface in an aqueous solution.
متن کاملIntracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles
The siRNA transfection efficiency of nanoparticles (NPs), composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide) or branched polyethyleneimine), were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD) was superior on both cell lines. How...
متن کاملA click chemistry route to 2-functionalised PEGylated and cationic β-cyclodextrins: co-formulation opportunities for siRNA delivery.
A new approach to the synthesis of amphiphilic β-cyclodextrins has used 'click' chemistry to selectively modify the secondary 2-hydroxyl group. The resulting extended polar groups can be either polycationic or neutral PEGylated groups and these two amphiphile classes are compatible in dual cyclodextrin formulations for delivery of siRNA. When used alone with an siRNA, a cationic cyclodextrin wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2014